Summary Sheet - Additions to Alkenes

If you understand just these 5 things, you'll be alright.

It's easy to get bogged down in details. Not all the details are equally important. Here are 5 key things to understand.

1. Understand the order of carbocation stability. Tertiary carbocations are most stable, followed by secondary and primary. Understand why.

2. The most negative group will bond to the carbon best able to support positive charge. This follows for the acid additions (e.g. HCI, HBr) AS WELL AS hydroboration, since H carries the negative charge in the H-B bond (due to the low electronegativity of B).

3. Acids + alkenes = free carbocations. With free carbocations, there can be no steroselectivity (i.e. they are stereorandom) Also, be alert for the possibility of rearrangements, especially where tertiary carbocations can be formed.

4. Halides + alkenes = bridging cations. These will provide anti products. These cations never rearrange.

5. If there's a metal involved, it's probably syn. The only exception is oxymercuration.

(Sixth thing - less applicable, but still important)

6. If radicals are involved in the mechanism there can be no stereoselectivity. The two examples are oxymercuration (where NaBH4 converts the C-Hg bond to C-H through a radical process) and the peroxide induced free radical addition.

Study Questions:
 What are some examples of Markovnikoff-selective reactions? Why are these reactions selective for the Markovnikoff products? What are some examples of anti-Markovnikoff products? What are some examples of anti-selective reactions. Why do they give the anti-products? What are some examples of syn-selective reactions? What are some examples of alkene and reagent that would provide you with: a perimary alcohol a tertiary alcohol with a tertiary alcohol i) a tertiary alcohol

Note - this sheet is not meant to be comprehensive. Your course may provide additional material, or may not cover some of the reactions shown here. Your course instructor is the final authority

Omissions	Mistakes,	Suggestions?
-----------	-----------	--------------

james@writechem.com

This sheet copyright 2010, James A. Ashenhurst masterorganicchemistry.wordpress.com

					June 2010. Version 1.0
R∕,,R R∕───H	1) BH ₃ 2) NaOH, H ₂ O ₂	H OH R, L L, R R H	Anti-Markovnikoff	syn addition	Sometimes you see BH ₃ •THF or B ₂ H ₆ - it's the same reagent in a slightly different form. The base (can be NaOH, KOH, identity unimportant) helps make H ₂ O ₂ more reactive. The reaction is <i>anti</i> - Markovnikoff because the H–B bond is polarized toward H (electronegativity of H = 2.2, B = 2.0) - the H adds to the carbon best able to stabilize positive charge (i.e. the most substituted one).
R, R, R	1) Hg(OAc) ₂ H ₂ O 2) NaBH ₄	HO H R H R	Markovnikoff	stereorandom	Can use an alcohol in place of water. Goes through 3-membered "mercuronium" ion. NaBH ₄ step removes the mercury. While the addition is anti, the overall reaction is stereorandom because this step involves a carbon based free radical (usually not discussed).
R, , R,	H ₂ SO ₄ H ₂ O		Markovnikoff	stereorandom	Strong acid protonates the alkene, generating free carbocation. Watch out for possibility of rearrangements when a tertiary carbocation could be generated through a 1,2 shift. HSO_4^- anion is not strongly nucleophilic, hence it does not add. Stereorandom because of the free carbocation.
R,, R R H			Markovnikoff	stereorandom	HCl and HBr (as well as HI, not pictured) protonate the alkene to give a free carbocation which can then be trapped by the halide anion. Stereorandom
	HBr		Markovnikoff	stereorandom	
B, B	Br ₂	Br R,, R R Br H Br	N/A	anti addition	$\begin{array}{c} B \\ R \\ H \\ \Theta \\ B \\ r \text{ or } H_2 \\ O \\ B \\ r \text{ or } H_2 \\ O \\ R \\ O \\ B \\ r \text{ or } H_2 \\ O \\ R \\ O \\ O$
R	H ₂ O	HO R, I , R R H Br	Markovnikoff	anti addition	The key detail in these reactions is solvent: water and alcohol solvents will form the halohydrin products (the ones containing the OH and Br). All other solvents (you might see CCl ₄ , CHCl ₃ , hexane, etc.) provide the dibromide.
R,, R R → H	Cl ₂	R, R R CI R CI	N/A	anti addition	As with bromination, above. Although not depicted, use of water or alcohol as solvent will also lead to formation of the halohydrin product (also anti).
R, , R R H	OsO4	HO OH R, I I, R R H	N/A	syn addition	Osmium is a transition metal. The tools won't be given in this course to fully understand how this reaction works. Occasionally a second reagent like NaHSO ₃ , H ₂ S, or Na ₂ S ₂ O ₃ is also given as a reactant in this reaction - minor detail, it's used to remove the osmium from the hydroxyl groups.
R∕,,R R∕───H	<mark></mark> ОН	R, O., R R H	N/A	syn addition	RCO_3H is a per-acid. A common peracid for this reaction is <i>m</i> -CPBA (<i>m</i> -chloroperbenzoic acid). If H_3O^+ , heat is written afterwards, this is opening of the epoxide to give the diol (anti-selective)
R, , , R R H	H ₂ Pt	H H R, L I, R R H	N/A	syn addition	The catalyst can vary - you might see Pd/C or Ni as well. All provide the same product with the same stereochemistry.
R, R	KMnO ₄	HO OH R, I I R R H	N/A	syn addition	Keywords are "cold, dilute". If "heat" is mentioned in the conditions, the diol will be cleaved to provide carbonyl compounds (same reaction as ozonolysis with oxidative workup, below.
R∕,,R R∕───H	HBr peroxides		anti-Markovnikoff	stereorandom	Peroxides generate the Br- radical, which adds to the double bond in the way that will generate the most stable radical (i.e. the radical will go on to the most substituted carbon). This explains the selectivity for the anti-Markovnikoff product. It's stereorandom because it goes through a free radical process.
R R		R,O R	+ 0=,R		$\mathrm{CH_3SCH_3}$ (dimethyl sulfide) is a reducing agent, it will be oxidized to dimethyl sulfoxide.
R H		R,O	+ 0➡ ^{\R} OH		Hydrogen peroxide is used to obtain the carboxylic acid instead of the aldehyde.

"Master Organic Chemistry" masterorganicchemistry.wordpress.com